3.4 Average Rate of Change

Name: ______ Hour: _____

First estimate the average rate of change for each of the following graphs over the given interval and then find it exactly.

4. [0, 3]

6. [0, 1]

Suppose 25 flour beetles are left undisturbed in a warehouse bin. The beetle population doubles in size every week. The equation $P(x) = 25 \cdot 2^x$ can be used to determine the number of beetles after x weeks. Complete the table.

- 7. Calculate the average growth rate between weeks 1 and 3.
- 8. Calculate the average growth rate for the first five weeks [0, 5].
- 9. Which average growth rate is higher? Why do you think it is higher?

Find the rate of change for the given functions and intervals			
10. $f(x) = x^2 + 4$ [2]	1,5]	11. $f(x) = -x^2 + 4$	[1,5]

12.
$$f(x) = \frac{1}{2}x^2$$
 [-2,6]
13. $f(x) = 3x - 3$ [-3,3]

14.
$$f(x) = 4x$$
 [-2,6] 15. $f(x) = x^2 + 9$ [0,3]

16. Sketch the graph of a function that has a negative average rate of change from [0,3]

Week	Population
0	
1	
2	
3	
4	
5	