\qquad Hour: \qquad
For each of the following find the axis of symmetry, vertex, y-intercept, and two additional points to graph the given function. Once the function is graphed, state the solutions.

1. $y=x^{2}-4 x$
2. $y=-x^{2}+6 x-5$

Axis of Symmetry:
Vertex:
Y-Intercept:
Two Points:

Solutions:
3. $y=x^{2}+4 x$

Axis of Symmetry:
Vertex:
Y-Intercept:
Two Points:

Solutions:

Axis of Symmetry:
Vertex:
Y-Intercept:
Two Points:

Solutions:
4. $y=2 x^{2}+4 x$

Axis of Symmetry:
Vertex:
Y-Intercept:
Two Points:

Solutions:

Solve each equation by graphing the related function and finding its zeros.

1. $3 x^{2}-9=-6$

2. $2 x^{2}-9=-1$

3. $7 x+10=-x^{2}$

Solve each by finding intersections of two functions.
5. $2(x-3)^{2}-4=0$

$$
-(x-3)^{2}+4=0
$$

7.

6.

8.

$$
(x+2)^{2}-2=0
$$

Nature A bird is in a tree 30 feet off the ground and drops a twig that lands on a rosebush 25 feet below. The function $h(t)=-16 t^{2}+30$, where t represents the time in seconds, gives the height h, in feet, of the twig above the ground as it falls. When will the twig land on the bush?
10.

Nature A monkey is in a tree 50 feet off the ground and drops a banana, which lands on a shrub 30 feet below. The function $h(t)=-16 t^{2}+50$, where t represents the time in seconds, gives the height h, in feet, of the banana above the ground as it falls. When will the banana land on the shrub?

11.

Counterexamples Pamela says that if the graph of a function opens upward, then the related quadratic equation has two solutions. Provide a counterexample to refute Pamelả's claim.

